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ABSTRACT
Dental biofilms produce acids from carbohydrates 
that result in caries. According to the extended car-
ies ecological hypothesis, the caries process con-
sists of 3 reversible stages. The microflora on 
clinically sound enamel surfaces contains mainly 
non-mutans streptococci and Actinomyces, in 
which acidification is mild and infrequent. This is 
compatible with equilibrium of the demineralization/
remineralization balance or shifts the mineral bal-
ance toward net mineral gain (dynamic stability 
stage). When sugar is supplied frequently, acidifi-
cation becomes moderate and frequent. This may 
enhance the acidogenicity and acidurance of the 
non-mutans bacteria adaptively. In addition, more 
aciduric strains, such as ‘low-pH’ non-mutans 
streptococci, may increase selectively. These micro-
bial acid-induced adaptation and selection pro-
cesses may, over time, shift the demineralization/
remineralization balance toward net mineral loss, 
leading to initiation/progression of dental caries 
(acidogenic stage). Under severe and prolonged 
acidic conditions, more aciduric bacteria become 
dominant through acid-induced selection by tem-
porary acid-impairment and acid-inhibition of 
growth (aciduric stage). At this stage, mutans strep-
tococci and lactobacilli as well as aciduric strains 
of non-mutans streptococci, Actinomyces, bifido-
bacteria, and yeasts may become dominant. Many 
acidogenic and aciduric bacteria are involved in 
caries. Environmental acidification is the main 
determinant of the phenotypic and genotypic 
changes that occur in the microflora during caries.
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INTRODuCTION

The supragingival dental biofilm constitutes an ecosystem of bacteria that 
exhibits a variety of physiological characteristics. In particular, the acid 

production resulting from carbohydrate metabolism by these bacteria and the 
subsequent decrease in environmental pH are responsible for the demineral-
ization of tooth surfaces (Marsh and Nyvad, 2008). However, other physiolog-
ical traits of the biofilm bacteria, such as base formation, may partly dampen 
the demineralization processes. Therefore, Kleinberg (2002) suggested that it 
is the proportions and numbers of acid-base-producing bacteria that are the 
core of dental caries activity.

Much research has identified mutans streptococci (MS) as the major 
pathogens of dental caries. This is because, first, MS are frequently isolated 
from cavitated caries lesions; second, MS induce caries formation in animals 
fed a sucrose-rich diet; third, MS are highly acidogenic and aciduric (Hamada 
and Slade, 1980; Loesche, 1986); and fourth, MS are able to produce surface 
antigens I/II and water-insoluble glucan, which promote bacterial adhesion to 
the tooth surface and to other bacteria (Hamada and Slade, 1980). A system-
atic literature review by Tanzer et al. (2001) confirms a central role for the 
MS in the initiation of dental caries on enamel and root surfaces.

However, several well-designed studies have revealed that the level of MS 
is not necessarily high in caries-associated biofilms, especially the microflora 
associated with non-cavitated stages of lesion formation (van Houte et al., 
1991a; Sansone et al., 1993). Instead, it is proposed that non-mutans acido-
genic and aciduric bacteria, including non-mutans streptococci and 
Actinomyces (Sansone et al., 1993; van Houte, 1994; van Houte et al., 1996), 
are more closely involved with the initiation of caries. In addition, van 
Ruyven et al. (2000) have detected non-mutans aciduric bacteria other than 
non-mutans streptococci and Actinomyces from dental biofilms covering 
white-spot lesions. They found that these bacteria consisted of various spe-
cies, including lactobacilli and Bifidobacterium.

Given these circumstances, the authors reconsidered the caries process 
from a microbiological, biochemical, ecological, and clinical perspective, 
and proposed an extension of the ecological plaque hypothesis (Takahashi 
and Nyvad, 2008) to explain the relation between dynamic changes in the 
phenotypic/genotypic properties of plaque bacteria and the demineralization/
remineralization balance of the caries process (Fig. 1). In this hypothesis, 
dental plaque is a dynamic microbial ecosystem in which non-mutans bacteria 
(mainly non-mutans streptococci and Actinomyces) are the key players for 
maintaining dynamic stability, i.e., a natural pH cycle (dynamic stability 
stage). Microbial acid-induced adaptation and subsequent acid-induced selec-
tion of ‘low-pH’ non-mutans bacteria play a critical role in destabilizing the 
homeostasis of the plaque by facilitating a shift of the demineralization/ 
remineralization balance from ‘net mineral gain’ to ‘net mineral loss’ (acido-
genic stage). Once the acidic environment has been established, MS and other 
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 aciduric bacteria may increase 
and promote lesion develop-
ment by sustaining an environ-
ment characterized by ‘net 
mineral loss’ (aciduric stage).

From the perspective of 
microbial ecology, dental dis-
eases may be considered a 
model system of amphibiosis 
(Ruby and Goldner, 2007), a 
term invented by the microbial 
ecologist Theodore Rosebury 
about 50 years ago (Rosebury, 
1962). Amphibiosis is the 
dynamic adaptation that occurs 
in response to changing envi-
ronmental conditions between 
two dissimilar organisms living 
together. Under ‘normal’ condi-
tions, micro-organisms in the 
oral cavity live in a symbiotic 
relationship with the host, char-
acterized by mutualism (bene-
ficial to both). However, the 
nature of a particular symbiosis may shift under changing condi-
tions in a reciprocal manner, with mutualism becoming parasit-
ism (beneficial to one and detrimental to the other) and vice 
versa (Stanier et al., 1970). This dynamic adaptation is the basic 
principle of endogenous disease processes, including dental car-
ies, and is congruent with the ecological caries hypothesis 
(Marsh, 1994; Takahashi and Nyvad, 2008). In the present arti-
cle, the authors will focus on recent microbiological findings 
about caries-associated bacteria, and re-assess the role of these 
bacteria in the caries process from an ecological perspective.

BACTERIAL MEMBERS IN ThE CARIES PROCESS: 
MICROfLORA Of DENTAL PLAquE ON CLINICALLY 
SOuND ENAMEL SuRfACES, WhITE-SPOT 
LESIONS, AND CAVITATED DENTIN LESIONS

Studies have shown that the initial colonizers of newly cleaned 
tooth surfaces constitute a highly selected part of the oral micro-
flora, mainly S. sanguinis, S. oralis, and S. mitis 1 (Nyvad and 
Kilian, 1987), but other genera, such as Actinomyces, are also 
present (Li et al., 2004; Dige et al., 2009). Surprisingly, MS com-
prise only 2% or less of the initial streptococcal population, 
regardless of the caries activity of the individual (Nyvad and 
Kilian, 1990). These observations emphasize that the vast major-
ity of the early colonizers on teeth belong to the ‘mitis group’. 
These bacteria, as well as other viridans group streptococci, are 
often referred to as the ‘non-mutans streptococci’, which are 
genetically distinct from the MS that belong to the ‘mutans group’ 
(Kawamura et al., 1995). As the microflora ages, the composition 
shifts from Streptococcus-dominant to Actinomyces-dominant 
(Syed and Loesche, 1978; van Palenstein Helderman, 1981). The 
predominant genera in mature smooth-surface plaque therefore 

belong to Actinomyces and Streptococcus, most of which are non-
mutans streptococci (Ximénez-Fyvie et al., 2000). MS are present 
in very low numbers (Bowden et al., 1975).

The proportion of MS in plaque covering white-spot enamel 
lesions is often higher than that at clinically healthy sites (van 
Houte et al., 1991b). Yet, non-mutans streptococci still remain 
the major bacterial group in white spots (Sansone et al., 1993; 
van Houte et al., 1996). In fact, it has been shown that, in the 
absence of MS and lactobacilli, the dissolution of enamel can be 
produced by members of the early microflora, exclusively 
(Boyar et al., 1989).

In cavitated lesions in dentin, including rampant caries, MS 
constitute about 30% of the total flora (Loesche et al., 1984; 
Milnes and Bowden, 1985; Boue et al., 1987), suggesting that 
MS are associated with progressive stages of caries. By contrast, 
MS are encountered less frequently at the advancing front of 
dentin caries, where lactobacilli, Prevotellae, and Bifidobacterium 
are more prevalent (Edwardsson, 1974; Becker et al., 2002; 
Martin et al., 2002; Munson et al., 2004; Chhour et al., 2005; 
Aas et al., 2008; Mantzourani et al., 2009a).

All these findings clearly show that the microflora on the 
tooth surface changes with caries lesion development, from 
dominance of non-mutans streptococci and Actinomyces to 
dominance of MS and other non-mutans bacteria, including 
lactobacilli and Bifidobacterium. Recent molecular identifica-
tion methods have also revealed that the microflora of clinically 
sound and carious surfaces is much more diverse and comprises 
hundreds of predominant species, of which 50-60% are not cul-
tivable (Aas et al., 2005, 2008). Nevertheless, these studies 
suggest, again, that bacterial species other than S. mutans, e.g., 
Lactobacillus, Bifidobacterium, Propionibacterium, non-mutans 
streptococci, and Actinomyces, likely play important roles in the 
caries process.

figure 1. The caries process according to an extended caries ecological hypothesis (modified from 
Takahashi and Nyvad, 2008).
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BACTERIAL METABOLIC PROPERTIES RELEVANT TO 
CARIES AND SuRVIVAL IN ThE ORAL CAVITY

Most bacteria in supragingival plaque metabolize various sugars 
and produce acids through a common glycolytic pathway, the 
Embden-Meyerhof-Parnas pathway. When sugar is supplied in 
excess, oral streptococci, including MS and non-mutans strepto-
cocci (van Houte et al., 1970; Hamilton, 1976; Takahashi et al., 
1991) and Actinomyces (Hamilton and Ellwood, 1983; Komiyama 
et al., 1988), can store the extra sugars as intracellular polysac-
charides (IPS), and they can utilize the IPS as an energy source to 
produce acids when sugar is limited, as occurs between meals. 
The final pH values of non-mutans streptococci, Actinomyces, 
MS, lactobacilli, and Bifidobacterium, when grown or incubated 
with glucose, are shown in the Table (Holt, 1984; Johnson et al., 
1990; Haukioja et al., 2008). In general, on the basis of final pH 
values, MS, lactobacilli, and Bifidobacterium are more acido-
genic and aciduric than non-mutans streptococci and Actinomyces. 
It should be realized, however, that the final pH values of non-
mutans streptococci and Actinomyces can be lower than pH 5.5, 
the ‘critical’ pH for the demineralization of enamel.

In addition, non-mutans streptococci and Actinomyces have a 
variety of extracellular glycosidases (Schaal, 1984; Beighton 
and Whiley, 1990; Whiley and Beighton, 1998; Paddick et al., 
2005) that can liberate sugars and amino-sugars from glycopro-
teins such as the mucin contained in saliva. Studies have identi-
fied sialidases in many species, including Streptococcus oralis, 
Streptococcus mitis, and Actinomyces naeslundii (Beighton and 
Whiley, 1990; Bradshaw et al., 1994). S. oralis also expresses 
N-acetyl-β-D-glucosaminidase and β-D-galactosidase, in addi-
tion to α-1-fucosidase and mannosidase activity (Byers et al., 
1999). Furthermore, mannosidase production has been identi-
fied within the viridans group streptococci (Homer et al., 2001), 
and all non-mutans streptococci grow on amino-sugars (Byers 
et al., 1996; Whiley and Beighton, 1998). This is an advantage 
for non-mutans streptococci and Actinomyces to survive in the 
oral cavity, where salivary glycoproteins are always available. 
However, most MS and lactobacilli do not have these metabolic 
features, except that fucosidase activity has been shown in 
Lactobacillus rhamnosus (Bradshaw et al., 1994). Furthermore, 
most non-mutans streptococci can utilize arginine/arginine-
containing peptides available in saliva through the arginine 

deiminase system, which degrades the arginine molecule to 
ammonia and carbon dioxide with production of ATP. Overall, 
this metabolic pathway produces alkali and neutralizes the intra-
cellular and the environmental pH (Burne and Marquis, 2000). 
The arginine deiminase system is helpful for non-mutans strep-
tococci not only to utilize arginine as an energy source, but also 
to survive under the acidic conditions in the oral cavity.

The Actinomyces have a unique glycolytic system (Takahashi 
et al., 1995), in which they utilize high-energy polyphosphate 
and pyrophosphate compounds for synthesis of hexokinase and 
phosphofructokinase, respectively, acting as phosphoryl donors 
instead of ATP. This means that the Actinomyces are able to 
exploit a surplus ATP to synthesize polyphosphate as an energy 
reservoir, and salvage energy from pyrophosphate, a high-
energy phosphoryl-bond-containing by-product from the metab-
olism of polymers such as nucleic acids and glycogens. In 
addition, the Actinomyces are often ureolytic (Kleinberg, 2002; 
Liu et al., 2006) and can utilize lactic acid as a carbon source for 
growth (Takahashi and Yamada, 1996). These diverse physio-
logical characteristics of Actinomyces seem to be advantageous 
to survival and domination in supragingival plaque (Takahashi 
and Yamada, 1999b).

ThE ROLE Of CARIES-RELATED BACTERIA IN ThE 
CARIES PROCESS ACCORDING TO ThE ExTENDED 
CARIES ECOLOGICAL hYPOThESIS

Dynamic Stability Stage

Many micro-organisms in dental plaque formed on clinically 
sound surfaces can produce acids from sugary foods, and the 
acids can demineralize the dental hard tissues. However, if the 
acidification episodes are mild and infrequent, homeostatic 
mechanisms in the plaque (Marsh and Martin, 1999) may easily 
restore the mineral balance toward net mineral gain in favor of 
‘remineralization’ (Manji et al., 1991). This dynamic environ-
ment brings the microflora to a stable stage, with dominance of 
non-mutans streptococci and Actinomyces (dynamic stability 
stage, Fig. 1). A chemostat study with 9 representative oral bac-
terial strains (Bradshaw and Marsh, 1998) revealed that 10 times 
the daily glucose supply (glucose pulse) at pH 7.0 established a 
stable microbial composition characterized by dominance of 
non-mutans streptococci and Actinomyces, which resembles that 
of oral biofilms on clinically sound enamel surfaces (Fig. 2A). 
In the chemostat, the growth medium contained a relatively high 
level of hog gastric mucin and a limited level of glucose, as in 
the oral cavity between meals, and a glucose pulse gave a tem-
porary increase of glucose in the environment, which mimics 
mealtimes. In a person with healthy eating habits, sugar is 
always limited in the oral cavity (Carlsson, 1997), except for 
regular mealtimes, resulting in mild and low frequencies of 
acidification (dynamic stability stage, Fig. 1). Both non-mutans 
streptococci and Actinomyces have an ability to utilize glyco-
proteins and amino acids supplied continuously in saliva, along 
with dietary sugars provided at infrequent meals, supporting 
their co-existence with other bacteria in a nutritionally fluctuat-
ing environment.

Table. Acidogenicity of Representative Caries-associated Bacteria

Bacteria Final pH Reference

Non-mutans 
 streptococci

4.2-5.2 a 1

Actinomyces 4.3-5.7 a 2
Mutans streptococci 4.0-4.4 a 1
Lactobacillus 3.6-4.0 a 1
Bifidobacterium 3.9-4.0 b 3

aFinal pH when grown in batch culture containing glucose.
bFinal pH when incubated in glucose solution.
1 Holt, 1984.
2 Johnson et al., 1990.
3 Haukioja et al., 2008.
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Acidogenic Stage

Acid-induced 
Adaptation: Phenotypic  
Changes of Microflora

When sugar is supplied fre-
quently or salivary secretion is 
too scarce to neutralize the acids 
produced, the pH decreases in 
the plaque become more severe 
and frequent. This change in the 
environment may enhance the 
acidogenicity and acidurance of 
the non-mutans bacteria adap-
tively. Takahashi and Yamada 
(1999a) have shown that when 
non-mutans streptococci, 
including S. sanguinis, S. oralis, 
S. gordonii, and S. mitis, were 
exposed to an acidic environ-
ment, they increased their 
acidogenicity. These bacteria 
were grown first at pH 7.0, and 
afterward at pH 5.5 for 0.5, 1, 
and 1.5 hrs, respectively (Fig. 
3). The bacteria were then har-
vested, washed, and incubated 
with glucose, and the final pH 
values were measured as a 
marker of acidogenicity. Their 
acidogenicity expressed as final pH values varied (pH 4.04-4.33) 
without incubation at pH 5.5, but after incubation at pH 5.5 for 
0.5, 1, and 1.5 hrs, all the bacteria increased their acidogenicity 
(pH 3.96-4.24 after 0.5 hr, pH 3.93-4.12 and pH 3.90-4.19 after 
1.5 hrs, respectively). These bacteria were also able to increase 
their acidurance adaptively (Fig. 3). Bacteria initially grown at pH 
7.0 were killed by acid stress in a strain-dependent manner follow-
ing exposure to pH 4.0 for 1 hr (survival rate: 0.0009-71%), but 
after pre-acidification at pH 5.5 for 1 hr, all the bacteria increased 
their acidurance (survival rate: 0.4-81%). The biochemical mecha-
nisms underlying the acid-induced adaptation are thought to 
involve the following mechanisms (Quivey et al., 2000): (1) an 
increase in proton impermeability of the cell membrane; (2) induc-
tion of proton-translocating ATPase (H+-ATPase) activity that 
expels proton from cells; (3) induction of the arginine deiminase 
system that produces alkali from arginine or arginine-containing 
peptides; and (4) induction of stress proteins that protect enzymes 
and nucleic acids from acid denaturation. In non-mutans strepto-
cocci, the increase in activities of H+-ATPase and arginine deimi-
nase and expression of stress proteins (homologues of heat-shock 
protein, Hsp60 and Hsp70) were observed following incubation at 
pH 5.5 (Takahashi and Yamada, 1999a).

Acid-induced Selection of ‘Low-ph’ Non-mutans 
Bacteria: Genotypic Change of Microflora

Acidification of dental plaque microflora due to frequent sugar 
intake or poor salivary secretion can be a driving force to 
enhance the acidogenicity and acidurance of the non-mutans 

bacteria, resulting in establishment of a more acidic environ-
ment. Even if acid-induced adaptation occurs, non-mutans bac-
teria such as non-mutans streptococci and Actinomyces are still 
so heterogeneous with respect to acidurance (van Houte et al., 
1991b, 1996) that the population of more aciduric strains, i.e., 
‘low-pH’ non-mutans bacteria, will increase selectively in this 
environment. Microbial acid-induced adaptation (phenotypic 
change of the microflora) as well as acid-induced selection 
(genotypic change of the microflora) will cause a shift in the 
acidogenic potential of the microflora, which, provided the 
demineralization/remineralization balance is disturbed over an 
extended period of time, may lead to initiation/progression of 
dental caries (acidogenic stage, Fig. 1).

Aciduric Stage

Acid-induced Selection of Aciduric Bacteria  
by Temporary Acid-impairment

Although ‘low-pH’ non-mutans bacteria can increase their 
acidurance and acidogenicity, and take over the dominant position 
in supragingival plaque, MS and lactobacilli are more competi-
tive under severely acidic conditions. Following a rapid expo-
sure to pH 4.0, as often observed in mature dental plaque after a 
sugar exposure, non-mutans streptococci and Actinomyces par-
tially lost their viability, while MS and lactobacilli were able to 
survive (Fig. 4A) (Horiuchi et al., 2009). Furthermore, when 
non-mutans streptococci and Actinomyces initially treated at pH 
4.0 in growth media were returned to pH 7.0, they started to 
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grow again. However, the bacterial growth (actual growth 
curve) was much slower than that expected from the number of 
surviving bacterial cells (expected growth curve) (Fig. 4B) 
(Horiuchi et al., 2009). Delay of the growth after acidification 
was common among non-mutans streptococci and Actinomyces, 
and ranged from 0.00 to 1.51 hrs after 0.5-hour acidification, 
from 1.54 to 2.44 hrs after one-hour acidification, and 2.41< hr 
after two-hour acidification. It should be noted that some non-
mutans streptococci and Actinomyces strains did not start to 
grow by 10 hrs after a two-hour acidification, indicating that 
they required a considerable time for growth to start again, 
although the cultures contained a significant number of viable 
bacteria (Fig. 4A). No viability loss and delay were observed in 
MS and lactobacilli, clearly indicative of their high acidurance. 
These observations suggest that acidification impairs bacterial 
growth ability temporarily in a strain-dependent manner, and 
that the acid-impaired bacteria need a considerable time to 
recover their growth ability. Correspondingly, Takahashi et al. 
(1997) have shown that a transient acidification temporarily 
inactivated the glycolytic enzymes, which returned to original 
levels after the pH had returned to neutral, although the mecha-
nisms have not yet been clarified.

Under these conditions, non-mutans streptococci and 
Actinomyces, probably except for some aciduric strains of non-
mutans streptococci and Actinomyces (Nyvad and Kilian, 1990; 
Aas et al., 2008), will be eliminated and replaced by more aci-
duric bacteria, such as MS and lactobacilli (aciduric stage, Fig. 
1), leading to a pronounced net mineral loss and rapid lesion 
progression. Since Bifidobacterium is also acidogenic and aci-
duric, similar to lactobacilli and more so than MS (van Houte 

et al., 1996; Haukioja et al., 2008), as shown in the Table, they 
may also overcome the competition and increase their propor-
tion of the microflora.

Acid-induced Selection of Aciduric Bacteria  
by Prolonged Acidification

A chemostat experiment with 9 representative oral bacteria 
(Bradshaw and Marsh, 1998) showed that when the pH was 
allowed to fall to a preset value of 5.0, MS and lactobacilli 
became dominant, while non-MS and Actinomyces started to be 
excluded from the consortium (Fig. 2A). When pH was further 
allowed to fall to 4.5 and without control (final pH = 3.83), MS 
and lactobacilli increased dramatically. Similar results were 
obtained from a batch-culture experiment (Horiuchi et al., 2009); 
at pH ≤ 5.0, MS and lactobacilli were able to grow faster than 
non-mutans streptococci and Actinomyces (Fig. 2B). At pH ≤ 4.6, 
lactobacilli grew faster than MS, consistent with the chemostat 
results that the proportion of lactobacilli became higher than that 
of MS at pH ≤ 4.5. Given these observations, it is suggested that 
prolonged acidic conditions around pH 5 may cause the emer-
gence of MS and lactobacilli in the microbial flora, and that more 
severe acidic conditions around pH 4 may exclude the non-
mutans streptococci and Actinomyces. In the oral cavity, pro-
longed acidic conditions (pH ≤ 5) can occur in carious cavities 
(Dirksen et al., 1962; Hojo et al., 1994), where clearance of acids 
is disturbed. This may be the reason MS and lactobacilli are fre-
quently isolated from established carious cavities. It is noticeable 
that all caries lesions with pH < 5 were designated as ‘active’ 
lesions and contained lactic acid exclusively (Hojo et al., 1994).

At the aciduric stage, acid-induced selection by acid-impairment 
and growth competition are the major reasons for the shift in the 
composition of the microflora. However, acid-induced adapta-
tion may still occur in aciduric bacteria, such as MS and lacto-
bacilli (Belli and Marquis, 1991; Ma et al., 1997; Svensäter
et al., 1997), in which both the acidogenicity and acidurance are 
enhanced under severe and prolonged acidic conditions. The 
basic biochemical reactions in response to acid stress are there-
fore similar to those described above in the acidogenic stage.

CLINICAL MICROBIOLOGICAL OBSERVATIONS 
IN SuPPORT Of ThE ExTENDED ECOLOGICAL 
CARIES hYPOThESIS

Early Childhood Caries (ECC) and MS: Which  
Comes first, the MS or Poor Eating habits/Low  
Socio-economic Status?

ECC refers to any dental caries in the primary dentition. ECC 
can destroy the primary dentition of toddlers and small children, 
and, if left untreated, it can lead to pain, acute infection, nutri-
tional insufficiencies, and learning and speech problems (AAPD, 
2008). In its less severe stage, ECC is characterized by smooth-
surface lesions of the primary teeth and is called ‘rampant car-
ies’ (Milnes, 1996).

In ECC lesions, the MS have been frequently isolated, and 
their proportion of the microflora was high (van Houte et al., 
1982; Milnes and Bowden, 1985). In addition, it has been 
reported that both the detection frequency of MS in saliva and 
the proportion of MS in plaque were associated with the severity 
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of ECC, suggesting that the MS 
are a major pathogen of ECC. A 
systematic review has con-
firmed that the presence of MS, 
in both plaque and saliva of 
young caries-free children, 
appears to be associated with a 
considerable increase in ECC 
risk (Thenisch et al., 2006). 
These findings remind us of 
‘the mutans story’, in which the 
MS were claimed to be the 
major pathogen in caries 
because of insoluble glucan 
formation and excessive acid 
production in response to a 
sucrose-containing diet.

However, recent studies 
have reported that eating habits 
and socio-economic status of 
children and their caregivers 
are good predictors of ECC 
(Nunn et al., 2009). In addition, 
oral health promotion programs 
based on repeated preventive 
guidance initiated during the 
mother’s pregnancy were suc-
cessful in reducing the inci-
dence of severe ECC in young 
children (Plutzer and Spencer, 
2008). In this context, ECC also follows the steps of the 
extended ecological plaque hypothesis. Frequent acidification of 
plaque by poor eating habits, such as frequent intake of sugared 
beverages and snacks, increases the acidogenic/aciduric bacteria 
and subsequently leads to dominance of the MS, with progres-
sion of caries lesions. Likewise, the detec tion of lactobacilli and 
Bifidobacterium in ECC lesions (Becker et al., 2002; Aas et al., 
2008) is in accord with the extended ecological hypothesis, 
since both bacterial genera are aciduric enough to colonize and 
proliferate in acidic caries lesions (Nakajo et al., in press).

Ecology of the Microflora in Patients with a Dry Mouth

Acidification of the biofilm could also happen because of 
hyposalivation, which reduces clearance of sugars and acids 
after carbohydrate consumption. Therefore, patients with a dry 
mouth run a higher risk of caries, particularly if their oral 
hygiene practices are poor. Hyposalivation can be caused by 
head and neck irradiation for the treatment of cancer, autoim-
mune diseases such as Sjögren’s syndrome, hormonal disorders, 
neurological disorders, or psychogenic illness, but the most 
common reason for decreased salivation is medication. Radiation 
treatment for head and neck cancer produces a particularly 
aggressive form of dry mouth. In patients with permanent 
hyposalivation due to radiation treatment, acidification of plaque 
after a sugar challenge was significantly higher and more pro-
longed than in control patients (Eliasson et al., 2006). These 

patients were also colonized by higher numbers of lactobacilli, 
MS, and Candida species in approximal plaque, suggesting that 
the acidic environment created by severe hyposalivation can be 
attributed to the propagation of aciduric bacteria. Candida spe-
cies are known to be acidogenic and aciduric (Samaranayake 
et al., 1986; Klinke et al., 2009), but it could not be excluded 
that acquired suppression of immune defense mechanisms as a 
result of cancer therapy may partly explain the emergence of 
these species (Budtz-Jörgensen, 1990).

Longitudinal analyses of the microflora in patients receiving 
radiation treatment (Brown et al., 1976) have demonstrated a 
rapid increase in the proportion of MS parallel with the onset of 
rampant caries. Increases of Lactobacillus species were 
observed to lag behind those of the MS, suggesting that the 
acidic environment created by hyposalivation severely destabi-
lized the homeostasis of the microflora. In this case, the MS 
may be associated with the onset of caries, while lactobacilli are 
opportunists favored by the environmental change created by 
lesion initiation, because lactobacilli are more aciduric than MS 
(Fig. 2).

Interestingly, Brown and co-workers (Brown et al., 1976) 
showed that deletion of dietary sucrose in the irradiated patients 
suppressed the emergence of MS and lactobacilli, and the levels 
of these bacteria remained considerably lower than in irradiated 
patients on an unrestricted diet. These longitudinal observations 
are congruent with the reciprocal adaptive microbial changes 
described in the extended caries ecological hypothesis.
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figure 4. Effect of severe acidification on representative oral bacteria. The data were modified from 
Horiuchi et al. (2009). (Panel A) Cell viability at pH 4.0. The bacterial cells grown at pH 7.0 were 
exposed to pH 4.0 for 0, 0.5, 1, 1.5, and 2 hrs in buffer solution. The treated bacterial cells were plated 
on blood agar and counted for colony-forming units after anaerobic incubation. (Panel B) Temporary 
growth impairment at pH 4.0. Bacteria (Streptococcus oralis ATCC 10557) grown at pH 7.0 were 
exposed to pH 4.0 for 1 hr in growth medium, and then incubated in growth medium at pH 7.0. Actual = 
Actual growth curve determined by measurement of optical density of culture medium. Expected = 
Expected growth curve calculated from surviving cell numbers after the exposure at pH 4.0 for 1 hr. 
Control = growth without acid-exposure.
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Root-surface Caries

Root surface caries was, for a long time, thought to be induced 
specifically by Actinomyces (Jordan and Hammond, 1972; 
Sumney and Jordan, 1974). This idea was probably ascribed to 
the sampling technique combined with the selective culturing 
techniques applied in these studies, Thus, it is to be expected 
that samples of softened carious dentin have a higher content of 
Gram-positive pleomorphic rods compared with samples con-
taining superficial layers of plaque, because of the selective 
invasion of Actinomyces-like bacteria into demineralized root 
tissue (Nyvad and Fejerskov, 1990). Recent molecular studies 
have confirmed the abundance of Actinomyces in carious root 
dentin (Preza et al., 2009).

S. mutans was detected in only half of the root caries lesions 
(Preza et al., 2009). Furthermore, as with enamel caries, MS may 
comprise only a small proportion of the microflora of root- 
surface caries lesions. van Houte et al. (1996) reported that non-MS 
and Actinomyces spp. were dominant in dental plaque covering 
root-surface caries and that the isolated Actinomyces strains were 
heterogenous with respect to acidogenicity: Strains isolated from 
root-surface caries were more acidogenic than those from clini-
cally sound root surfaces. Brailsford et al. (2001) observed a 
similar phenomenon in individuals with root-surface caries. 
These authors found that aciduric bacteria able to grow at pH 4.8 
comprised 21.6% of the total microflora in root-surface caries 
lesions (lactobacilli and Actinomyces were dominant), whereas 
aciduric bacteria comprised 10.7% in clinically sound root sur-
faces (Actinomyces-dominant). However, in individuals without 
root-surface caries, aciduric bacteria comprised only 1.4% of 
total microflora in clinically sound root surfaces. These findings 
point to an association between acidogenic/aciduric Actinomyces, 
i.e., ‘low-pH’ Actinomyces, and root-surface caries.

Recently, Mantzourani et al. (2009b) demonstrated that the 
family Bifidobacteriaceae, including Bifidobacterium, 
Scardovia, and Parascardovia, was associated with cavitated 
root caries lesions, together with MS, lactobacilli, and yeasts 
(Actinomyces were not examined), indicating that the acidic 
environment of the lesions provided a suitable habitat for the 
proliferation of these aciduric micro-organisms. Collectively, 
the information obtained so far supports the contention (Bowden, 
1990; Nyvad, 1993) that the ecological succession of the micro-
flora in root-surface caries follows the same pattern as that 
observed for cavitated dentin caries.

CONCLuSIONS AND fuTuRE DIRECTIONS  
fOR RESEARCh

Our review of the literature supports the concept that dental car-
ies is an endogenous disease, which is caused by a change from 
mutualistic symbiosis to parasitic symbiosis in the microbial 
ecosystem, i.e., a microbial shift from dynamic stability via 
acid-induced adaptation and selection to an aciduric stage, 
according to the extended ecological plaque hypothesis. In this 
hypothesis, the entire consortium of acidogenic/aciduric bacte-
ria, not only the MS, contributes to the caries process—a view 
that is compatible with the mixed-bacteria ecological approach 
proposed by Kleinberg (2002).

Acid production is the direct causative factor in the demin-
eralization of tooth surfaces, but acid production is also an 
environmental determinant that influences both the pheno-
typic and genotypic properties of the oral microflora through 
acid-induced adaptation and selection. It is important to appre-
ciate, however, that the enrichment of acidogenic/aciduric 
bacteria is a result of microbial acid formation during the car-
ies processes—not the causative factor per se—and thus the 
removal of specific aciduric bacterial species such as the MS, 
through vaccination, gene therapy, or antimicrobial treatment, 
may not be an effective approach for long-term caries control. 
Rather, environmental control of the microflora should be 
achieved by avoiding acidification of the dental biofilm. 
Practical solutions to this strategy may include mechanical 
plaque control, reduction/substitution of the intake of sugary 
foods, and/or application of pH-neutralizing techniques such 
as saliva stimulation.

The caries process usually progresses rather slowly because 
of alternating de- and remineralization episodes in the biofilm. 
However, if the local environment changes—for example, in 
response to frequent sugar intake or low salivary secretion com-
bined with insufficient oral hygiene—the equilibrium between 
the de- and remineralization episodes may favor a net mineral 
loss. These processes may lead to rampant caries, of which ECC 
and radiation caries are classic examples. Even so, it is salutary 
to know that the caries processes can be reversed, depending on 
the local environmental conditions. Therefore, it is important to 
learn how we can stimulate a mutualistic microflora to sustain 
clinically healthy conditions. Future microbiological studies of 
caries should therefore focus on a better understanding of the 
physiological mechanisms that serve to maintain the dynamic 
stability in dental biofilms. In this context, because of their asso-
ciation with mildly acidogenic environments, the non-mutans 
streptococci and Actinomyces may be interesting candidates for 
further analysis of their acid-base metabolic processes (Burne 
and Marquis, 2000; Kleinberg, 2002).

In recent years, investigators have advanced molecular iden-
tification methods in the attempt to resolve the microbiological 
foundation of caries. Hence, several elegant molecular studies 
have tried to elucidate the microbiological differences between 
clinically healthy and carious conditions (Becker et al., 2002; 
Corby et al., 2005; Aas et al., 2008). While these studies have 
concluded that the microflora involved in caries is much more 
complex than hitherto anticipated, the analyses have not always 
shown a clear-cut pattern between health and disease. In addi-
tion to inter-individual differences (Aas et al., 2005; Preza et al., 
2009), this may partly be because of methodological shortcom-
ings. In some studies, the bacteria were pooled from several 
surfaces/lesions in the same person. Because of intra-oral envi-
ronmental variability (Kleinberg and Jenkins, 1964; Fejerskov 
et al., 1994; Haffajee et al., 2009), pooled plaque samples can-
not be expected to give a clear picture of the microbiome at a 
site. Another shortcoming may relate to the fact that refined 
gene technology does not match the crude style of lesion clas-
sification commonly used. Most studies of caries microbiology 
do not take into account novel knowledge about the dynamic 
metabolic processes in caries, and as a result, lesion activity is 
seldom defined. There is evidence that site-specific sampling of 
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well-defined surfaces and lesions may reveal microbial patterns 
of particular ecological interest. It has thus been reported that 
the overall composition of the microflora may change from a 
state of diversity to a state dominated by smaller numbers of 
aciduric species with increasing lesion activity of root caries 
(Nyvad and Kilian, 1990; Preza et al., 2009). Therefore, for 
verification of the extended ecological plaque hypothesis, 
including the role of the non-mutans bacteria in the caries pro-
cess, future molecular studies need to apply a refined caries 
lesion classification (Nyvad et al., 1999) that has been validated 
for lesion activity (Nyvad et al., 2003).

In view of our current philosophy, stressing the importance of 
environmental acidification, we propose that, to fully understand 
the ecological processes in caries, prospective molecular studies 
should involve not only bacterial identification and quantifica-
tion, but also metabolic characterization of, e.g., lesion pH 
in vivo (Fejerskov et al., 1992), and/or the use of more sophisti-
cated methodologies, such as metabolome analysis (metabolo-
mics) and metagenome analysis (metagenomics), for reconstruction 
of metabolic networks in the microflora. Metabolomics can 
monitor a remarkable spectrum of metabolites in the microflora 
with the combination of chromatographic/electrophoretic separa-
tion and mass spectrometry-aided identification of metabolites 
(Takahashi et al., in press), while metagenomics can identify 
metabolically functional genes, such as genes coding metabolic 
enzymes, comprehensively (Tringe et al., 2005; Gianoulis et al., 
2009). We believe that such comprehensive approaches to analyz-
ing the composition and function of well-defined microbial com-
munities may offer new insight into the microbial ecosystem in 
caries, although these methodologies cannot give information 
about the spatial organization of the predominant genera and spe-
cies (Dige et al., 2009; Zijnge et al., 2010).
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